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Abstract. We evaluate the small-amplitude excitations of a spin-polarized vapour of Fermi atoms confined
inside a harmonic trap. The dispersion law ω = ωf [` + 4n(n + ` + 2)/3]1/2 is obtained for the vapour in
the collisional regime inside a spherical trap of frequency ωf , with n the number of radial nodes and ` the
orbital angular momentum. The low-energy excitations are also treated in the case of an axially symmetric
harmonic confinement. The collisionless regime is discussed with main reference to a Landau-Boltzmann
equation for the Wigner distribution function: this equation is solved within a variational approach allowing
an account of non-linearities. A comparative discussion of the eigenmodes of oscillation for confined Fermi
and Bose vapours is presented in an Appendix.

PACS. 67.40.Db Quantum statistical theory; ground state, elementary excitations

1 Introduction

The achievement of condensation in confined vapours of
bosonic alkali atoms [1–3] and more recently in vapours of
hydrogen [4] has been giving great stimulus to the study
of many-body and quantum statistical effects in dilute
quantal fluids. In particular, the observation of small-
amplitude shape-deformation modes in these bosonic con-
densates at very low temperature [5,6] has provided a cru-
cial test for the theory as developed by many authors (see
for instance [7–9]). Trapping of fermionic species has also
been reported for 6Li [10] and 40K [11]. Cooling of these
Fermi gases into the regime of quantal degeneracy still re-
mains to be achieved experimentally, but one may already
anticipate that the observation of the dynamic response of
the vapour of fermionic atoms to modulations of the trap
will provide an important method of diagnostics. It is to
the theoretical study of the elementary excitations in such
dilute normal Fermi fluids at very low temperature that
the present work is addressed.

We assume that the vapour has reached thermal equi-
librium inside a magnetic trap and regard it as a dilute,
spin-polarized Fermi fluid. The s-wave collisions between
pairs of atom are inhibited by the Pauli principle, so that
to leading order only p-wave scattering and dipole-dipole
magnetic interactions are important. However, these inter-
action effects are very small at the temperatures of present
interest [12,13]. The confined vapour may then be treated
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as a non-interacting Fermi gas, with resistance to shape
deformation being provided by exchange in the regime of
quantal degeneracy.

In Section 2 we start treating an inhomogeneous gas
composed of (a large number of) non-interacting fermions
from the general viewpoint of the equation of motion
for the Wigner distribution function and of its projec-
tions yielding the conservation laws in the form of quantal
hydrodynamic equations [14]. On neglecting temperature
fluctuations, the kinetic stress tensor contains the essen-
tial physical input for the study of both the equilibrium
density profile and the dynamics of density fluctuations.
In turn, the kinetic stress tensor is simply related to the
local Pauli pressure and to the velocity field under two
assumptions: (i) the inhomogeneity is weak on the length
scale set by the inverse Fermi wavenumber, and (ii) local
equilibrium is maintained in the dynamics of the vapour
by frequent collisions against external scatterers (see the
discussion given at the beginning of Sect. 2.2 and of Sect. 5
below). For the equilibrium state we recover from this
approach the Thomas-Fermi form of the density profile
already found by Mølmer [15] for fermions in a boson-
fermion mixture at zero temperature. We proceed from
here in Section 3 to evaluate the eigenmodes of small-
amplitude oscillations for the Fermi vapour at zero tem-
perature in a spherically symmetric trap. In an Appendix
we show how one may recover within the same approach
the results of Stringari [7] for the collective excitations of
a Bose condensate in the strong coupling regime and com-
paratively discuss the nature of the eigenmode solutions
for the Fermi gas and for the Bose condensate.
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In Section 4 we extend the discussion of the small-
amplitude vibrations of an inhomogeneous Fermi gas to
the case of confinement within an axially symmetric har-
monic trap and give explicit results for the low-lying eigen-
modes. In Section 5 we consider instead the dynamics of a
Fermi gas under spherical confinement in the case where
collisions have a negligible effect on the deviations from
equilibrium. We make brief reference to the zero-sound
excitation of the homogeneous Fermi gas in such a colli-
sionless regime and then focus on a variational treatment
of a Landau-Boltzmann equation for the Wigner distribu-
tion function. Finally, Section 6 gives a brief summary of
our main results and offers some concluding remarks.

2 Small-amplitude excitations
in the collisional regime

We describe the inhomogeneous spin-polarized fermion
cloud by the one-particle density matrix

ρ(x,x′; t) = 〈Ψ̂†(x, t)Ψ̂ (x′, t)〉 (2.1)

where Ψ̂ and Ψ̂† are the fermionic field operators satisfy-
ing the usual anticommutation relations and the brackets
denote the expectation value in the equilibrium state. We
have suppressed the spin index, which is frozen because
the magnetically trapped fermions are taken to belong
to a single hyperfine level. The equation of motion for
the density matrix of non-interacting fermions in an ex-
ternal potential Vext(x, t) is (see for instance Singwi and
Tosi [16])

[i~∂t − (~2/2m)(∇2
x −∇2

x′) + Vext(x, t)

− Vext(x′, t)]ρ(x,x′; t) = 0. (2.2)

We shall take Vext(x, t) as the sum of a harmonic static
potential V0(x) and of a perturbing dynamic potential
V1(x, t).

The generalized hydrodynamic equations expressing
the conservation laws are obtained by expanding equa-
tion (2.2) in powers of r = x − x′ around the diagonal
R = (x + x′)/2. We introduce the Wigner distribution
function fp(R, t), which is related to ρ(x,x′; t) by

fp(R, t) =
∫

drρ(R + r/2,R− r/2; t) exp(ip · r/~),
(2.3)

and its successive moments giving the density of particles
n(R, t),

n(R, t) =
∫

dp
(2π~)3

fp(R, t), (2.4)

the current density j(R, t),

j(R, t) =
∫

dp
(2π~)3

p
m
fp(R, t) (2.5)

and the kinetic stress tensor Πij(R, t),

Πij(R, t) =
∫

dp
(2π~)3

pipj
m

fp(R, t). (2.6)

Then by the indicated expansion procedure we obtain the
conservation laws in the form

∂tn(R, t) = −∇ · j(R, t) (2.7)

and

m∂tj(R, t) = −∇ ·Π(R, t)− n(R, t)∇Vext(R, t). (2.8)

We consider below only isothermal fluctuations and there-
fore omit to write down the energy conservation equation.

2.1 Approximations on the kinetic stress tensor

The kinetic stress tensor of an homogeneous fluid is related
to the pressure P and to the velocity field v by

Πij = Pδij + nmvivj . (2.9)

For the ideal spin-polarized Fermi gas at zero temperature
we have

P = 2E/3V = 3nεf/5 (2.10)

where E is the ground-state energy and

εf = ~2(6π2n)2/3/2m

is the Fermi energy. On the other hand, the second term
on the RHS of equation (2.9) can be dropped in the linear
regime.

These results can be used to obtain the kinetic stress
tensor of the inhomogeneous Fermi fluid if the inho-
mogeneity is sufficiently weak to allow a local-density
approximation, i.e.

Πij(R, t) = P (R, t)δij =
2
5
A(n(R, t))5/3δij (2.11)

where A = ~2(6π2)2/3/2m. More explicitly, we are as-
suming that the length scale for the variation of the den-
sity profile in space is large relative to the inverse Fermi
wavenumber k−1

f .
We remark that insertion of equation (2.11) into equa-

tions (2.7, 2.8) and reduction to the case of a static ex-
ternal potential yields the equation for the equilibrium
density profile n0(R) in the form

2
5
A∇[n0(R)]5/3 + n0(R)∇V0(R) = 0. (2.12)

The solution of equation (2.12) is the Thomas-Fermi
profile for the confined Fermi vapour,

n0(R) = ϑ(εf − V0(R))[(εf − V0(R))/A]3/2 (2.13)

(see for instance Mølmer [15]). The profile vanishes
continuously at a radius Rf , say.
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2.2 Equation of motion for small amplitude
fluctuations

With regard to the dynamics of the fermionic cloud, the
approximation (2.11) is most suitable for treating a “colli-
sional” regime in which the relaxation of the fluctuations
is rapid on the time scale set by the frequency of the driv-
ing potential. We shall have to return on this point in
Section 5 below. Here we proceed to study the dynam-
ics of the fermion cloud for small distortions of its density
profile around the equilibrium Thomas-Fermi profile given
in equation (2.13).

If we denote by n1(R, t) such a small-amplitude den-
sity fluctuation, equations (2.7, 2.8, 2.11) can be linearized
and combined to yield the equation of motion

∂2
t n1(R, t) =

1
m
∇R ·

{
n1(R, t)∇RV0(R)+

2
3
A∇R[n2/3

0 (R)n1(R, t)]
}
.

(2.14)

Equation (2.14) holds at resonance, since we have dropped
the external perturbation drive. In the homogeneous limit
(V0(R) → 0) it describes sound propagation at a speed c
given by c = (2εf/3m)1/2 – a well-known result for first
sound in the ideal Fermi gas [17]. In this so-called colli-
sional regime the local compressions and expansions of the
homogeneous fluid which are induced by the sound wave
are reflected in spherically symmetric oscillations of the
diameter of the Fermi sphere.

3 Small oscillations in a spherical trap

We determine in this section the solution of equa-
tion (2.14) for the case of a spherically symmetric har-
monic confinement, i.e. V0(R) = mω2

f R
2/2.

We Fourier-transform equation (2.14) with respect to
time and rescale all lengths in units of the harmonic oscil-
lator length aho = (~/mωf)1/3 by setting R = ahox. We
get

3ω2n1(x, ω) = −ω2
f∇x · [n1(x, ω)∇x(x2/2)

+ (X2 − x2)∇xn1(x, ω)], (3.1)

where X = (2εf/mω
2
f a

2
ho)1/2 is the scaled radius of the

fermionic cloud. We search for spherical solutions of equa-
tion (3.1) having the form

n1(x, ω) = ϑ(X − x)x`F (x/X)Ym` (θ, ϕ), (3.2)

with Y m` (θ, ϕ) being the spherical harmonics. Clearly, we
have imposed on the eigenmode solutions the condition
that they be non-vanishing only inside the equilibrium
cloud radius X . In addition we shall impose that the solu-
tions vanish continuously at the cloud boundary x = X ,
as a consequence of Fermi statistics giving a high cost in
kinetic energy to rapid variations of the density profile
in space. This boundary condition on the eigenmodes of

vibration for a trapped Fermi gas is further discussed in
the Appendix and is contrasted there with that imposed
e.g. by Stringari [7] on those of a trapped (interacting)
Bose gas, where considerations of kinetic energy only play
a secondary role.

After setting y = x/X and substituting the expres-
sion (3.2) into equation (3.1) we find the differential equa-
tion satisfied by F (y),

(1− y2)
d2F (y)

dy2
+

2(`+ 1)− (2`+ 3)y2

y

dF (y)
dy

+ [3 + 3(ω/ωf)2 − `]F (y) = 0 (3.3)

with the boundary condition F (1) = 0. We adopt the
Fuchs method for solving an ordinary differential equa-
tion in a series form around regular singular points [18].
Using the above-mentioned condition of continuity at the
boundary and the fact that F (y) is an even function of its
argument, the solutions of equation (3.3) are

F (y) = (1− y2)1/2
∞∑
k=0

αk(1− y2)k (3.4)

and the coefficients αk satisfy the recurrence relation

αk+1 =
(2k + 1)(2k + 2`+ 3)− [3 + 3(ω/ωf)2 − `]

2(k + 1)(2k + 3)
αk.

(3.5)

Finally, the dispersion relation for the normal modes is
obtained by imposing that the solutions (3.4, 3.5) reduce
to polynomials, i.e. αn+1 = 0 for an integer n representing
the number of internal nodes of the density fluctuation
profile. This yields

ω(n, `) = ωf [`+
4
3
n(n+ `+ 2)]1/2. (3.6)

The dispersion relation (3.6) correctly displays the
sloshing-mode solution ω = ωf at (n = 0, ` = 1, m = 0),
in agreement with the generalized Kohn theorem [19].

It is also interesting to notice that the eigenfrequencies
of the surface modes at n = 0 are the same as those found
by Stringari [7] for a Bose condensate in a spherical trap
and that the ` = 0 modes resemble those found for a Fermi
superfluid by Baranov and Petrov [20].

4 Extension to axially symmetric magnetic
confinement

We evaluate in this section the low-lying solutions of equa-
tion (2.14) in the case of an axially symmetric harmonic
confinement, which is more directly relevant in regard to
experiment. The confining potential is chosen as

V0(ρ, z) =
1
2
mω2

f (ρ2 + λ2z2) (4.1)
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where ρ = (x2 + y2)1/2 is the radial coordinate and λ is
the anisotropy parameter.

In the axially symmetric case only the Lz component of
the angular momentum along the z-direction is conserved,
whereas ` is no longer a good quantum number. However,
for the low-lying modes we can still start from a spherical
base as in equation (3.2) and suitably modify it so as to
account for the cylindrical symmetry of the problem. As
we shall see through an example below, the consequence
of the reduced symmetry is a coupling between some of
the modes which are characterized by different values of `
in the spherical base.

We give here the explicit results for the eigenfrequen-
cies and the density-fluctuation profiles in some instances
of dipolar and quadrupolar modes. In the expressions
reported below, all lengths are still scaled in units of
aho = (~/mωf)1/2.

4.1 Dipole sloshing mode along the z-direction

Starting from the spherical-base solution corresponding to
(n = 0, ` = 1, m = 0), we construct the density profile

n
(0,1,0)
1 (ρ, z;ω) = (1− ρ2 − λ2z2)1/2ρ. (4.2)

The corresponding frequency is ω = λωf , in accord with
the generalized Kohn theorem [19].

4.2 Quadrupole surface modes

The anisotropy introduces a splitting between the
quadrupolar modes corresponding to (n = 0, ` = 2,
m = 1) and to (n = 0, ` = 2, m = 2). The density
profiles and the eigenfrequencies are as follows:

n
(0,2,1)
1 (ρ, z;ω) = (1− ρ2 − λ2z2)1/2ρz exp(iϕ),

ω = (1 + λ2)1/2ωf , (4.3)

and

n
(0,2,2)
1 (ρ, z;ω) = (1− ρ2 − λ2z2)1/2ρ2 exp(2iϕ),

ω = 21/2ωf . (4.4)

In these equations ϕ is the angular variable in the trans-
verse plane. The two eigenfrequencies become degenerate
in the spherical limit, where ω = 21/2ωf .

4.3 Monopole and quadrupole coupled modes

The anisotropy introduces a coupling between the modes
described by the quantum numbers (n = 1, ` = 0, m =
0) and (n = 0, ` = 2, m = 0). The associated density
fluctuations are

n
(1,0,0)
1 (ρ, z;ω) = (1− ρ2 − λ2z2)1/2(a− ρ2 − z2) (4.5)

and

n
(0,2,0)
1 (ρ, z;ω) = (1− ρ2 − λ2z2)1/2(2z2 − ρ2) (4.6)

where a is to be determined from a normalization condi-
tion. From the coupled eigenmode equations we find the
eigenfrequencies as

ω = 3−1/2ωf [4λ2 + 5± (16λ4 − 32λ2 + 25)1/2]1/2. (4.7)

The dispersion relation in equation (4.7) also holds for
these modes in a degenerate Bose gas and in a classical
gas [21].

The above examples should be sufficiently illustrative
of the procedure to be followed in determining the small-
amplitude oscillations in the case of axial anisotropy.

5 Collisionless regime

We return to the case of spherical confinement for the
purpose of discussing the role of collisions in the dynam-
ics of the fermion cloud. We have already remarked in
Section 2 that in the homogeneous limit equation (2.14),
which was derived with the help of the expression (2.11)
for the kinetic stress tensor, describes first sound in a col-
lisional regime where the local Fermi sphere executes a
“breathing” oscillation. In the so-called collisionless (or
zero sound) regime, on the other hand, the relaxation time
of density fluctuations in the homogeneous Fermi fluid
is long compared with the period of the eigenmode and
the local Fermi sphere undergoes anisotropic deformations
(see for instance Pines and Nozières [17]). In the limit of
vanishing coupling the speed of zero sound tends to the
Fermi velocity vF (compared with the value 3−1/2vF for
the velocity of first sound) and the deformation of the
Fermi surface reduces to a small bump in the direction of
the propagation vector. The collective zero-sound mode
involves in this limit only a small number of quasiparti-
cles and essentially propagates at their velocity.

For a discussion of the dynamics of a magnetically con-
fined fermion cloud in a regime where collisions have little
influence, we resort to an equation for the Wigner distri-
bution function having the form of a Boltzmann equation
with the collision integral set to zero, that is

∂tfp(R, t)+
P
m
·∇Rfp(R, t)−∇RV0(R)·∇pfp(R, t)=0.

(5.1)

This equation is in fact analogous to the Landau transport
equation for quasiparticles in a homogeneous Fermi liquid
in the collisionless regime and is expected to be valid down
to very low temperature provided that the cloud contains
a large number of fermions.

In searching for solutions of equation (5.1), we focus
on the shape-deformation modes which can be monitored
by measuring the mean square radius of the cloud as a
function of time. Within this class of modes we adopt
a semiclassical variational ansatz as already proposed
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by Bijlsma and Stoof [22] for a bosonic cloud. This
amounts to choosing fp(R, t) in the form of the equilib-
rium solution Φeq(p,R) after rescaling both the space and
the momentum variable through time-dependent factors
in each geometric direction. More precisely, for i = x, y, z
we introduce variational parameters αi(t) describing the
deviation of the mean square sizes of the cloud from their
equilibrium values,

αi(t) = [〈R2
i (t)〉/〈R2

i 〉eq]1/2. (5.2)

The form of fp(R, t) is then taken as

fp(R, t) = (cxcycz)

× Φeq({c1/2i αi(pi −mRiα̇i/αi)}, {c1/2i Ri/αi}), (5.3)

the time-independent coefficients ci being introduced in
equation (5.3) in order to ensure that the initial momen-
tum distribution is isotropic. The equilibrium form of the
Wigner distribution for the degenerate Fermi gas subject
to spherical confinement can in turn be chosen as a gen-
eralized Fermi sphere,

Φeq(p,R) = θ

(
p2

2m
+

1
2
mω2

f R
2 − µf

)
, (5.4)

µf being the chemical potential. Of course, equation (5.4)
yields the same equilibrium density as that reported ear-
lier in equation (2.13). We emphasize that in the present
treatment we are assuming that, even though collisions
have negligible influence on the dynamics of the cloud,
they must have been active in the past in order to bring
the cloud to the state of thermal equilibrium.

The equations of motion for αi(t) in each spatial direc-
tion are obtained by taking the moments of equation (5.1)
with respect to Ripi [22]:

α̈i(t) + ω2
f αi(t) = ω2

f α
−3
i (t). (5.5)

It is worth noticing that for a non-interacting gas equa-
tion (5.5) follows directly from the dynamical scaling
ansatz and does not require a specific assumption on the
shape of the variational function.

The solution of the non-linear equation of motion (5.5),
under the initial condition αi(0) = 1, is

αi(t) = (21/2ωf)−1

× [c+ (c2 − 4ω4
f )1/2 sin(±2ωft− ϕ)]1/2, (5.6)

with sinϕ = [(c − 2ω2
f )/(c + 2ω2

f )]1/2 and the constant c
determined by the initial velocity according to

α̇(0) = ±(c− 2ω2
f )1/2. (5.7)

A more direct contact can be made with the results
reported in the preceding sections for the gas in the colli-
sional regime by linearizing equation (5.5). In such small-
oscillations regime equation (5.5) becomes an equation for
the linearized mean square radius α(1)

i (t), which reads

α̈
(1)
i (t) + 4ω2

f α
(1)
i (t) = 0. (5.8)

Evidently one obtains an oscillation of the cloud at fre-
quency 2ωf , corresponding to the frequency of a single-
particle excitation in the cloud.

As a final remark we point out that, while equa-
tion (5.1) satisfies the generalized Kohn theorem, a
more sophisticated variational ansatz would be needed to
extract from it the sloshing mode [22].

6 Summary and concluding remarks

In summary, we have presented an investigation of the col-
lective excitations of a spin-polarized Fermi gas confined
in an external harmonic trap. We have obtained analytic
results for the small-amplitude eigenmodes in a dynam-
ical regime corresponding to first sound in the bulk and
proposed a Landau-Boltzmann approach to treat the dy-
namics of the confined gas in a dynamical regime corre-
sponding to zero sound in the bulk. In spite of the assumed
negligible role of interactions between the particles of the
gas in contributing to a mean field sustaining a collective
oscillation, we have seen that the Pauli pressure alone can
determine a rather rich dynamical behaviour.

Trapped mixtures of bosonic and fermionic species are
expected to become accessible to experiment in the near
future. The investigation of collective excitations in such
mixtures seems a natural direction of development for the
present study. The density profiles of the mixtures have
been determined theoretically both in the ground state
at zero temperature [15] and in the equilibrium state at
finite temperature [13]. From these studies one can eas-
ily envisage situations in which the dynamics of a boson-
fermion mixture should be amenable to analytical ap-
proaches. Theoretical progress in this area will be reported
elsewhere.

This work is supported by the Istituto Nazionale di Fisica della
Materia through the Advanced Research Project on BEC. One
of us (IM) wishes to thank Professor M. Fontana and the Isti-
tuto Nazionale di Fisica della Materia for a short-term training
grant which has permitted her participation in this work.

Appendix A: Collective excitations in Fermi
versus Bose-condensed clouds

In this appendix we first show how the dynamics of a
dilute Bose-condensed cloud at zero temperature can be
studied within the Wigner-distribution formalism that we
have used for the spin-polarized Fermi gas (see also [14]).
We thereby derive the analogue of the equation of mo-
tion (2.14) for density fluctuations in the Bose-condensed
cloud and point out that for harmonic confinement it co-
incides with that obtained by Stringari [7] in a hydro-
dynamic approach to the strong coupling limit. We then
comparatively discuss the nature of the solutions of the
two equations of motion for the Fermi gas and for the
Bose-condensed cloud.



446 The European Physical Journal D

A.1 Equation of motion for density fluctuations
in a Bose-condensed cloud

In the case of a Bose-condensed system at zero tempera-
ture, and neglecting depletion due to the interactions, the
one-body density matrix introduced in equation (2.1) re-
duces to the simple product of two condensate wave func-
tions,

ρ(x,x′; t) = Φ∗(x, t)Φ(x′, t). (A.1)

The generalized hydrodynamic equations (2.7, 2.8) are
thereby closed and the kinetic stress tensor is explicitly
given by

Πij(R, t)=
~2

m

[
∂2

∂ri∂rj

{
Φ∗
(
R− r

2
, t
)
Φ
(
R+

r
2
, t
)}]

r=0

.

(A.2)

However, for a Bose condensate with repulsive interactions
in the strong coupling limit the kinetic stress tensor be-
comes in fact negligible compared with the confinement
and interaction energy terms. The linearized equation of
motion for density fluctuations becomes [23,24]

∂2
t n1(R, t) =

1
m

∫
dx′

∫
dx′′[n0(R)∇2

Rδ(R− x′)

+∇Rn0(R)·∇Rδ(R−x′)]ν(x′,x′′)n1(x′′, t),

(A.3)

where ν(x′,x′′) is the interparticle potential.
Assuming contact interactions, i.e. ν(x′,x′′) = gδ(x′−

x′′) with g = 4π~2a/m where a is the s-wave scattering
length, equation (A.3) immediately yields

∂2
t n1(R, t) =

g

m
∇R · [n0(R)∇Rn1(R, t)]. (A.4)

This yields the equation of motion derived by Stringari [7]
when the Thomas-Fermi solution is used for the equilib-
rium density profile n0(R).

Before proceeding we wish to emphasize that the na-
ture of the Thomas-Fermi approximation is very differ-
ent in the two cases that we are considering. In the spin-
polarized Fermi gas the interactions are negligible, so that
the kinetic term provides the only energy scale. On the
other hand, in a mesoscopic Bose condensate the interac-
tions are dominant even at zero temperature. Neverthe-
less, the form of equation (A.4) is essentially similar to
that of equation (2.14).

A.2 Comparative discussion of the solutions
of equations (A.4, 3.1)

The solutions of equation (A.4) for the Bose-condensed
cloud vanish outside the cloud radius Rb and present a
discontinuity at Rb [7]. Indeed, by the Fuchs method used
in Section 3 one may prove that it is not possible to impose

continuity at Rb. The discontinuity is physically accept-
able in view of the fact that the kinetic energy term has
been set as negligible in taking the strong-coupling limit.

On the other hand, equation (3.1) for the Fermion
cloud admits, in addition to the solution that we have pre-
sented in the main text, a non-vanishing solution outside
the cloud radius Rf . This solution is

n1(R, ω) = Cϑ(y − 1)y−[3+(ω/ωf)
2]. (A.5)

Evidently, such a finite external solution going to zero only
for y → ∞ as in equation (A.5) is inconsistent with the
assumption of small-amplitude oscillations of the cloud.
Nevertheless, if for a moment one admits it and asks that
the constant C be finite and determined by imposing con-
tinuity at the boundary with the internal solution (as nec-
essary in a system where the kinetic energy is dominant),
one finds a dispersion relation which is different from that
given in equation (3.6), that is

ω = ωf

{
1
3

[`+ 4n(n+ `+ 1)]− 1
}1/2

. (A.6)

It is evident that the modes with n = 0 and ` ≤ 3 are
suppressed, and in particular the sloshing mode which is
expected from the generalized Kohn theorem is absent. We
have for this reason discarded this second solution and, by
imposing that the internal solution vanishes continuously
at the boundary (i.e. C = 0), found the dispersion rela-
tion reported in equation (3.6) in the main text. We also
remark that each physically acceptable eigenfrequency of
the cloud, with increasing n at fixed ` in equation (3.6),
lies between two of the unphysical frequencies given by
equation (A.6).

In conclusion, the different roles played by the kinetic
energy in the Bose condensate and in the Fermi gas lead
to very different forms of the density fluctuations in these
two systems. In the former system the amplitude of the
fluctuations vanishes discontinuously at the boundary of
the cloud in the strong-coupling limit, whereas in the
latter it vanishes continuously at the boundary.
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